Chapter 10 Circles

Section 2 Arcs and Chords

GOAL 1: Using Arcs of Circles

In a plane, an angle whose vertex is the center of a circle is a **central angle** of the circle.

If the measure of a central angle, $\angle APB$, is less than 180° , then A and B and the points of $\bigcirc P$ in the interior of $\angle APB$ form a **minor arc** of the circle. The points A and B and the points of $\bigcirc P$ in the exterior of $\angle APB$ form a **major arc** of the circle. If the endpoints of an arc are the endpoints of a diameter, then the arc is a **semicircle**.

NAMING ARCS Arcs are named by their endpoints. For example, the minor arc associated with $\angle APB$ above is \widehat{AB} . Major arcs and semicircles are named by their endpoints and by a point on the arc. For example, the major arc associated with $\angle APB$ above is \widehat{ACB} . \widehat{EGF} below is a semicircle.

NAMING ARCS Arcs are named by their endpoints. For example, the minor arc associated with $\angle APB$ above is \widehat{AB} . Major arcs and semicircles are named by their endpoints and by a point on the arc. For example, the major arc associated with $\angle APB$ above is \widehat{ACB} . \widehat{EGF} below is a semicircle.

MEASURING ARCS The measure of a minor arc is defined to be the measure of its central angle. For instance, $\widehat{mGF} = m \angle GHF = 60^{\circ}$. " \widehat{mGF} " is read "the measure of arc GF." You can write the measure of an arc next to the arc. The measure of a semicircle is 180° .

The measure of a major arc is defined as the difference between 360° and the measure of its associated minor arc. For example, $\widehat{mGEF} = 360^{\circ} - 60^{\circ} = 300^{\circ}$. The measure of a whole circle is 360° .

Example 1: Finding Measures of Arcs

Find the measure of each arc of Circle R.

Two arcs of the same circle are *adjacent* if they intersect at exactly one point. You can add the measures of adjacent arcs.

POSTULATE

POSTULATE 26 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

$$\widehat{mABC} = \widehat{mAB} + \widehat{mBC}$$

Example 2: Finding Measures of Arcs

Find the measure of each arc.

Example 3: Identifying Congruent Arcs

Find the measures of the blue arcs. Are the arcs congruent?

- A 45*, yes (come from same/congruent circle)
- $B 80^*$, yes (come from congruent circles)
- C 65*, no (come from different sized circles)

GOAL 2: Using Chords of Circles

A point Y is called the *midpoint* of \widehat{XYZ} if $\widehat{XY} \cong \widehat{YZ}$. Any line, segment, or ray that contains Y bisects \widehat{XYZ} . You will prove Theorems 10.4–10.6 in the exercises.

THEOREMS ABOUT CHORDS OF CIRCLES

THEOREM 10.4

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

$$\widehat{AB} \cong \widehat{BC}$$
 if and only if $\overline{AB} \cong \overline{BC}$.

THEOREM 10.5

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

$$\overline{DE} \cong \overline{EF}, \widehat{DG} \cong \widehat{GF}$$

THEOREM 10.6

If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

 \overline{JK} is a diameter of the circle.

Example 4: Using Theorem 10.4

Use Theorem 10.4 to find \widehat{mAD} .

Example 5: Finding the Center of a Circle

Theorem 10.6 can be used to locate a circle's center, as shown below.

1 Draw any two chords that are not parallel to each other.

2 Draw the perpendicular bisector of each chord. These are diameters.

The perpendicular bisectors intersect at the circle's center.

THEOREM

THEOREM 10.7

In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

 $\overline{AB} \cong \overline{CD}$ if and only if $\overline{EF} \cong \overline{EG}$.

Example 7: Using Theorem 10.7

AB = 8, DE = 8, and CD = 5. Find CF.

$$\chi^{2} + \chi^{2} = 5^{2}$$
 $\chi^{2} + 10 = 25$
 $\chi^{2} - 5$

$$C(5=3=)CF=3$$

EXIT SLIP